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Spatially distributed nonpoint source (NPS) pollution indices are used to identify areas in a watershed
where potential pollutant loading coincides with runoff generating areas. However, most such indices
either ignore the degree of hydrologic connectivity to the stream network or they estimate it based sim-
ply on the distance of the pollution generating area from an open channel. We propose an NPS pollution
index based on runoff travel times from saturated variable source areas (VSAs) to the natural stream net-
work as a means for including hydrologic connectivity between source areas and streams. Although this
method could be generalized to any pollutant transported by storm runoff, here we focus on phosphorus
and refer to the index as the travel-time phosphorus index (TTPI). The TTPI was applied to a 38 km2 agri-
cultural watershed in central New York and shown to yield realistic, spatially explicit predictions of crit-
ical phosphorus loading areas and routing pathways. One interesting finding is the potential role of man-
made drainage networks (e.g., road- or agricultural-ditches) in NPS pollution and the possibilities of tar-
geting water quality protection practices around or within these networks. Because the technique is GIS-
based, relatively simple to apply, uses readily available geospatial data, and the theoretical underpinnings
are transparent, it can provide a useful screening tool for water resource managers charged with the iden-
tification and remediation of critical NPS pollution source areas.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Identified as the leading threat to water quality in the US and a
major cause of aquatic ecosystem degradation, nonpoint source
(NPS) pollution has been the subject of extensive research and bil-
lions of dollars in remediation efforts (Diebel et al., 2008; USEPA,
1998). A key challenge facing water resource managers is the iden-
tification and prioritization of Critical Source Areas (CSAs), which
can greatly improve the efficiency of conservation efforts (BMPs)
(Carpentier et al., 1998; Diebel et al., 2008; Endreny and Wood,
2003). Defined as areas in a watershed where pollutant loading
coincides with runoff generating areas, CSAs can be spatially tar-
geted within a landscape using NPS pollution indices (e.g. Agnew
et al., 2006; Frankenberger et al., 1999; Gburek et al., 2002; Marje-
rison et al., 2011; Walter et al., 2000, 2009; Qiu et al., 2007). For
example, the Phosphorus Index (PI), originally developed by
Lemunyon and Gilbert (1993), is a widely adopted concept for
ll rights reserved.
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identifying nonpoint phosphorus (P) CSAs on farms. Initially de-
vised as a means for quantifying relative pollution risk (e.g. proba-
bility), as opposed to actual pollutant loading (e.g., kg/ha or lbs/
acre), the PI ranks individual fields based on both ‘‘source’’ (e.g. soil
test P, fertilizer and manure P rate and application method) and
‘‘transport’’ factors (e.g. soil erosion, surface runoff, proximity to
streams). This approach has been tested and modified by numer-
ous researchers (Andersen et al., 2008; Bechmann et al., 2007;
Czymmek et al., 2003; Marjerison et al., 2011; Ou and Wang,
2008; Sharpley, 1995) and has been adopted by most state conser-
vation agencies in the U.S. However, the traditional PI is designed
to be a farm-scale planning device and requires site-specific data
(e.g. soil test P) that are not widely available; thus, it is not gener-
ally practical to adopt the PI approach to watershed-scale planning.

While hydrologic and water quality models have been proposed
and used for watershed-scale assessment and planning, they are
generally prohibitively complex for conservation planners to use
(Lane et al., 2006; White et al., 2010). Moreover, they generally re-
quire substantial parameterization and calibration data that are of-
ten difficult to obtain and model outputs are frequently at larger
scales than those relevant to individual management practices.

http://dx.doi.org/10.1016/j.jhydrol.2013.01.018
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For example, model output is often at the scale of sub-catchments
or Hydrologic Response Units (HRUs), which precludes spatial tar-
geting of within-field hotspots. Therefore, management decisions
are generally made farm-by-farm using the PI or similarly simple
tools.

Recognizing the need for a screening tool that allows conserva-
tion planners to prioritize CSAs across spatial scales, several stud-
ies have developed spatially distributed topological
representations (viz. Heathwaite et al., 2005) of catchment pro-
cesses using GIS-based models that rank individual polygons or
grid cells within a watershed according to their propensity to gen-
erate and transport polluted runoff (e.g., Bolinder et al., 2000;
Endreny and Wood, 2003; Heathwaite et al., 2003). By allowing
planners to evaluate risk at a catchment scale using relative simple
tools that do not require extensive expertise, parameterization or
calibration, these indices have improved the utility of the PI. How-
ever, both traditional field-scale and GIS-based PIs tend to overem-
phasize the source factor by either ignoring the degree of
hydrologic connectivity to the stream network or estimating it
based simply on the distance of the contributing area from a
stream channel (e.g. Chen et al., 1994; Marjerison et al., 2011).

As Sharpley et al. (2008) point outs, the weighting of contribut-
ing-distance, unlike other PI factors, has been based more on pro-
fessional judgment than empirical observation. To improve the
objectivity of contributing-distance weighting, Gburek et al.
(2000) derived a site-specific weighting function based on a rela-
tionship between storm return period and contributing-distance.
They reasoned that higher pollution risk and thus higher relative
weights should be assigned to smaller, shorter return period
storms because they have a high frequency of occurrence and pose
a more chronic, easily-managed pollution risk. In a subsequent
study, Gburek et al. (2002) took the concept one step further by
generalizing the site-specific contributing-distance factor to ‘‘an
objective, design-oriented approach for application to farms within
ungaged watersheds.’’ This revised transport factor approach im-
proved the broader utility of the PI while incorporating a measure
of variable source area (VSA) hydrology by weighting areas close to
streams with a higher transport risk. However, the technique as-
sumes uniform transport-risk zones, akin to uniform-width stream
buffers, and yet correlations between VSAs and simple metrics of
stream proximity are poor (Agnew et al., 2006). Additionally, agri-
cultural practices, as well as other human activities in humid re-
gions, typically involve the installation of various fine-scale
drainage structures (e.g. ditches and tile drains) that significantly
modify flow paths – thereby altering P fate and transport dynamics
(Buchanan et al., 2012; Burt et al., 1999; Carluer and De Marsily,
2004; Quinn, 2004). Reaney et al. (2011) underscore the impor-
tance of such ‘‘local, often small scale, hydrological pathways’’ be-
cause they ‘‘can exert a major control on whether or not material is
delivered to [natural] drainage networks (e.g. Blackwell et al.,
1999; Burt et al., 1999; Quinn, 2004) as well as deposition and
transformation processes that result (Harris and Heathwaite,
2005).’’ Unfortunately, the fixed-width contributing-distance
methods of traditional and even return-period-enhanced PIs do
not provide realistic predictions of the effects of flow path altera-
tions at such fine-scales as, for example, road ditches and agricul-
tural drainage structures.

Thus, a major challenge facing the next generation of PIs is to
combine the idea of weighting of CSAs based on the frequency/
probability of runoff generation (e.g., Gburek et al., 2002) with real-
istic representations of VSAs (e.g., Endreny and Wood, 2003; Mar-
jerison et al., 2011) and their connectivity to receiving water.
Furthermore, to ensure the greatest utility for conservation plan-
ners, they must achieve both of these objectives while providing
pollution risk estimates across a range of spatial scales. That is to
say, they must yield scientifically defensible, easily interpretable
predictions at both catchment (potentially > 1000 km2) and sub-
field scales (Lane et al., 2006).

We propose basing a PI on frequency-weighted runoff travel
times from saturation-excess-based CSAs to the natural stream
network as a means for including probability of runoff generation
(frequency weighting), topographic position (saturation excess),
hydrologic connectivity (indicated by travel-time) and land use
(indicator of P sources) in the computation of pollution risk. Our
ultimate objective is the creation of a GIS-based, scalable screening
tool with transparent theoretical underpinnings for use by water
resource managers in the identification and remediation of critical
NPS P source areas and transport pathways.

2. Calculating the travel-time phosphorus index

The proposed PI, hereafter referred to as the Travel Time Phos-
phorus Index (TTPI), utilizes soil, elevation, hydrography, land use,
and rainfall data in a six-step procedure to predict distributed run-
off source areas and travel times to natural streams (Fig. 1). First,
the frequency of runoff generation for the watershed is determined
as a function of rainfall frequency (Fig. 1, Step 1). Next, the average
watershed-wide available water storage and temporal distribution
of runoff generation are computed (Fig. 1, Steps 2 and 3). Then, for
each point (grid or raster cell), the depth and location of runoff
generation are calculated based on topographic position within
the watershed (Step 4). The travel-time between each runoff-gen-
erating point in the landscape and a receiving stream is deter-
mined from the depth of stormflow (Fig. 1, Step 4) and the
down-slope flow conditions; e.g., travel-times for points experi-
encing shallow storm runoff are based on kinematic wave approx-
imations, travel-times associated with open channels are based on
Manning’s equation, etc. (Fig. 1, Step 5). The composite travel time
index for each grid cell reflects the difference in travel time during
different magnitude storm events calculated as the inverse of the
travel time weighted by frequency of occurrence of the given storm
event (Fig. 1, Step 5). Land use is used to indicate P sources based
on published export coefficients (Fig. 1, Step 6). The TTPI is the
product of the travel time index and the normalized P export coef-
ficient (Fig. 1, Step 6). A detailed step-by-step description of the
TTPI procedure follows.

2.1. Frequency of occurrence (Step 1)

We calculated the frequency of occurrence of 24-h rainfall
depths by binning the rainfall into equal depth intervals and divid-
ing the number of occurrences of rainfall in the ith bin (mi) by the
total number of rain events (N):

fi ¼
mi

N
ð1Þ

where f,i represents the frequency of occurrence of the ith rainfall
bin. Each rainfall bin will have a corresponding average total rainfall
depth, Ri. Note, we want enough bins to adequately represent the
frequency distribution; we found that using intervals of 1 cm
seemed to work well in upstate, NY. The calculations are carried
out for rainfall events representing a range of occurrence probabil-
ities, which allow us to assign probability weights to the index
scores. Specifically, smaller, more frequent storms are assigned a
greater weight to reflect their chronic effect on water quality rela-
tive to severe storms.

2.2. Watershed storage (Step 2)

Next, we determined the average Natural Resource Conserva-
tion Service (NRCS) Curve Number (CN) equation storage values



Fig. 1. Flow chart of the major steps involved in computing the TTPI. (For interpretation of the references to colour in this figure, the reader is referred to the web version of
this article.)
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(S) for the watershed by fitting the following version of the equa-
tion (e.g., USDA-SCS, 1986) to rainfall-runoff data (e.g. Shaw and
Walter, 2009):

Q ¼ R2
e

Re þ S
forRe > 0; ð2Þ

where Q is the storm runoff depth (cm), Re is the depth of effective
rainfall (cm) (total rainfall minus the initial abstraction, Ia), and S is
maximum available storage within the catchment (cm). Although it
is customary to compute Ia = 0.2S, recent research has indicated that
Ia = 0.05S yields more accurate estimations of watershed runoff
(Woodward et al., 2002; Lim et al., 2006; Shaw and Walter, 2009;
Shi et al., 2009). Hereafter, Ia = 0.05S is assumed. To fit Eq. (2), we
vary S until we achieve a best-fit to the paired rainfall-runoff data.
2.3. Temporal distribution of rainfall (Step 3)

Because runoff travel times are computed on an average hourly
basis we must compute the number of hours during which Ri > Ia

for each rainfall bin. Although there are a number of more sophis-
ticated approaches to estimating the average distribution of 24-h
storm events (e.g. Guo and Hargadin, 2009) we use the NRCS Type
I–III rainfall distribution curves (Chin, 2006) as they are already
widely adopted for stormwater engineering. For example, in the
case of a 1 cm storm with a Type-II distribution over a watershed
with an S of 15 cm, i.e., Ia = 0.75 cm, runoff will not occur until
the cumulative rainfall is 0.75 cm (Fig. 2). In this instance, the
number of runoff-generating hours for the ith rainfall bin (Ti) is
roughly 11 h and thus, Re = 0.25 cm. In this way, the effective pre-
cipitation for each rainfall bin (Re,i) is determined.
2.4. Runoff analysis (Step 4)

The first phase of Step 4 is to calculate flow distance, slope and
flow accumulation rasters via a digital terrain analysis in GIS. Next,
the natural and artificial channels are delineated in order to calcu-
late runoff travel times in Step 5. A detailed explanation of the
steps involved in this terrain analysis is provided in the TTPI Appli-
cation section.

The spatial distribution of runoff for each frequency bin is
determined based on a VSA conceptualization of the CN equation
(Steenhuis et al., 1995), which predicts the fraction of the total wa-
tershed area producing runoff (A) for the ith rainfall bin (Ai) as
follows:

Ai ¼ 1� S2

ðRe;i þ SÞ2
ð3Þ

Within Ai, some parts of the landscape will generate more runoff
than others so we divide the watershed into wetness classes, each
characterized by a unique local effective storage (r, cm), i.e., the
sum of areas with r < Re will equal A. Fractional runoff contributing
areas for each rainfall bin are spatially distributed among wetness
classes based on a soil topographic index (k) (e.g. Lyon et al.,
2004; Walter et al., 2002):

k ¼ ln
a

K � D � tanðbÞ

� �
ð4Þ

where a is the upslope contributing area (m2), b is the local topo-
graphic slope (m m�1), D is the soil depth above the restrictive layer
(m) and K is the saturated hydraulic conductivity (m d�1). The k-val-
ues can be binned into convenient increments (e.g., integer-values)
and grid-cells sharing a common k-value represent a unique
wetness class (s) possessing a unique fractional area (As). The s



Fig. 2. SCS Type II storm distribution. The shaded region represents the proportion of rainfall from a hypothetical 1 cm storm allocated to initial abstraction in a watershed
with an S of 15 cm. The runoff generating period, in this case the remaining 11 h of the 24-h storm, can only begin after the Ia of 0.75 cm has been satisfied. (For interpretation
of the references to colour in this figure, the reader is referred to the web version of this article.)
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associated with the greatest propensity to saturate is defined by the
largest k-value (kmax while the critical threshold value of k at which
runoff begins for a specific rainfall bin is ki; Ai,s is the cumulative A
between ki and kmax (Fig. 3).

Following Schneiderman et al. (2007), the local effective storage
for each wetness class (rs) and rainfall frequency bin can be calcu-
lated as a function of the maximum total watershed storage, S:

rs ¼
2Sð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ai;s

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ai;s þ 1

p
Þ

ðAi;sþ1 � Ai;sÞ
� S ð5Þ

where each area is defined by a specific s that is bounded on one
side by the fraction of the watershed that is wetter, Ai,s, and on
the other side by the fraction of the watershed that is dryer, Ai,s+1,
i.e., has greater local effective soil moisture storage.

For saturated areas, the storm flow per unit area (m s�1) for
wetness class s in the ith rainfall bin (qs,i) is:

qs;i ¼
Re;i � rs

Ti � 3:6� 105 for Re; i > rs ð6aÞ

qs;i ¼ 0 for Re;i < rs ð6bÞ

where Ti is the duration of the storm during which runoff is gener-
ated (h) (Fig. 2) and 3.6 � 105 converts this value to seconds.
Fig. 3. Schematic showing the relationship between s and Ai (adapted from Lyon
et al., 2004).
2.5. Runoff travel time (Step 5)

To compute spatially distributed runoff travel times to natural
streams, we employ a three-phase routing algorithm which ac-
counts for travel times associated with: (i) shallow storm runoff
(‘‘overland’’ flow), (ii) shallow interflow triggered by infiltrating
overland flow, and (iii) channel flow.

‘‘Overland’’ runoff travel time for the kth overland grid cell for
each frequency bin is estimated by combining the steady state
kinematic wave approximation with Manning’s equation (derived
from Chow et al., 1988, Section 9.3, assuming shallow flow):

TTok ¼ q�0:4
s;i;k

L0:6n0:6

b0:3

 !
k

ð7Þ

where TTok is the overland travel time across grid-cell k (s), L is the
flow path distance across the grid cell (m), n is the Manning’s
roughness value (s m�1/3), qs,i,k is the storm flow per unit area
(Eq. (6a)) over the kth grid-cell (m s�1), and b is the topographic
slope (m m�1).

In some cases, grid cells will not generate runoff, yet will receive
it from neighboring upslope cells. In these instances, we assume
runoff would infiltrate and proceed down-slope as shallow inter-
flow. Ignoring tortuosity, shallow interflow travel times across
the kth cell, TTik, (s) are estimated for each rainfall bin assuming
steady state flow through soil (e.g. Brosig et al., 2008):

TTik ¼
L

Ksat
ne

b
� �
2
4

3
5

k

ð8Þ

where L is the flow path distance (m), Ksat is the lateral saturated
hydraulic conductivity (m s�1), ne is the effective porosity, and b
is the topographic slope which is assumed to approximate the
hydraulic gradient (m m�1).

Flow velocities in the man-made channels were calculated by
combining Manning’s equation and the continuity equation for a
wide channel (Melesse and Graham, 2004; Muzik, 1996). The tra-
vel time across the kth channel cell at each respective frequency
bin (TTck) was determined as the flow length, L, divided by the
channel velocity:

TTck ¼ L=
b0:5

n
Q c;i

W

� �0:67
" #0:6

8<
:

9=
;

k

ð9Þ
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where Qc,i is the cumulative discharge (m3 s�1) obtained from a
weighted flow accumulation to the cell for each rainfall bin and
W is the channel width (m) of the kth grid cell. Note, if artificial
channel widths are difficult to obtain, Du et al. (2009) provide a
slightly different formulation of Eq. (9) that eliminates the need
for channel width.

The cumulative travel times (
R

TT) to natural streams are calcu-
lated as sum of all grid cell travel times along each respective flow
path by setting the natural streams to a null value, and using the
inverse of the travel time grid as a weighting raster in the ArcGIS
Flowlength command.

2.6. Pollution index (Step 6)

The composite frequency-weighted travel time in the kth grid
cell (CTTk) is calculated as:

CTTk ¼
XM

i¼1

fiR
TT

 !
k

ð10Þ

where
R

TT represents the cumulative travel time of the ith frequency
bin, fi represents the frequency of occurrence (Eq. (1)) and M is the to-
tal number of frequency bins. This formulation ensures that the com-
posite travel time for each grid cell is weighted such that smaller,
more frequent storms and cells with faster travel times are assigned
a higher weight. This is in concert with the commonly held view that
storms with a much higher probability of occurrence are of dispro-
portionate concern from a water quality perspective (Gburek et al.,
2000; Quinton et al., 2001). The fact that faster travel times also re-
ceive higher composite scores reflects the greater water quality
threat presented by more efficient hydrologic connectivity. Because
travel times are computed on an hourly time-step with 1-h being
the lowest travel time; and because travel times are divided into
the full range of fi values, the CTT values vary between 0 and 1.

A normalized phosphorus export coefficient map (P�k) can be
generated using readily available land use data and tabulated
export values:

P�k ¼
Pk � Pmin

Pmax � Pmin
ð11Þ

where Pk is the export coefficient associated with the land use in
grid-cell k, Pmin and Pmax are the smallest and largest tabulated ex-
port coefficients.
Fig. 4. Location map of Paines Creek watershed. NHD stream overlay derived from the N
colour in this figure, the reader is referred to the web version of this article.)
Using the Raster Calculator in ArcGIS, or any software platform
with raster math capabilities (e.g. R), the final TTPI map is gener-
ated as the product of the normalized phosphorus export coeffi-
cient raster (Eq. (11)) and the composite travel time raster (Eq.
(10)).
2.7. TTPI application

2.7.1. Site description
We applied the TTPI procedure to Paines Creek, a 38 km2 wa-

tershed near King Ferry in south-western Cayuga County, NY
(Fig. 4). Like many rural northeastern watersheds, slopes are mod-
erate, averaging roughly 5%, and the dominant land use is agricul-
ture (68.6%), with the remaining land in a combination of mixed
and evergreen forest (17.2% and 14.0%, respectively) and residen-
tial (0.2%). Also characteristic of most northeastern agricultural
watersheds, the hydrography of Paines Creek has been highly mod-
ified by agricultural and roadside ditches.
2.7.2. Geospatial data
2.7.2.1. Digital terrain analysis. High resolution Light Detection and
Ranging (LiDAR) data (±0.15 m vertical accuracy) was interpolated
to a 3 � 3 m digital elevation model (DEM) of the study watershed
using Topo-to-Raster, an ArcGIS Spatial Analyst tool. After filtering
and pit-filling the DEM to minimize anomalous elevation averages
and undefined drainage directions, we enforced the known drain-
age pattern by lowering the elevation of grid cells associated with
surveyed watercourses, including fine-scale artificial drainages
such as roadside- and agricultural-ditches. Subsequently, the chan-
nel network, watershed and sub-watersheds were delineated using
ArcHydro terrain preprocessing tools (Maidment, 2002). A detailed
description of the methods used to obtain the surveyed channel
dataset can be found in Buchanan et al. (2012).
2.7.2.2. Channel attributes. Accurate estimation of channel travel
times (Eq. (9)) requires raster coverages of channel bottom widths
and Manning’s roughness values for artificial channels. Agricultural
and road ditch bottom widths were assigned from the field survey
data. Manning’s n values for agricultural and roadside ditches, as
well as for overland flow (Eq. (7)), were based on tabulated values
(Chin, 2006; Chow et al., 1988).
ational Hydrography Dataset (USGS, 2009). (For interpretation of the references to



Table 1
P export coefficients for land uses within Paines Creek
watershed (Endreny and Wood, 2003).

Landuse kg/ha/yr

Deciduous forest 0.04
Coniferous forest 0.06
Grass/shrub 0.21
Pasture 0.49
Hay 0.1
Corn/soybean 0.67
Manured cornfield 3.05
Alfalfa 0.64
Barnyard 3.05
Urban and roads 0.49

Fig. 5. Best-fit of Eq. (2) to observed discharge and rainfall from Paines Creek.

Fig. 6. Frequency of occurrence plotted against 1 cm rainfall bins for Paines Creek.
Approximate return periods for the storms associated with selected bins are
included for reference.

Table 2
Average storm depth and number of runoff generating
hours for the mean storm size from each rainfall bin.

Storm depth (cm) Runoff generating hours

1.25 11
2.25 12
3.25 13
4.25 14
5.25 15
6.25 16
7.25 17
8.25 17
9.25 18

10.25 18
13.25 19
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2.7.2.3. Soils, land cover and surface roughness. Land cover maps
were extracted from a high resolution geospatial data layer (Haith
et al., 2009). The Soil Data Viewer application (USDA-NRCS, 2009)
was used to create raster maps of saturated hydraulic conductivity
(K), soil depth (D) and effective porosity from the USDA-NRCS Soil
Survey Geographic (SSURGO) database. Horizontal K, used in Eq.
(8) (Ksat), was approximated by adjusting the SSURGO K by a factor
of 10 to reflect rapid conductivities associated with preferential
flow through macropores (Brooks et al., 2004; Brutsaert and Lopez,
1998; Brutsaert and Nieber, 1977; Frankenberger et al., 1999;
Mehta et al., 2004).

2.7.2.4. Phosphorus export coefficients. A P export coefficient map
was generated using readily available land use data and tabulated
export values. In the case of Paines Creek, we used the export coef-
ficient values compiled by Endreny and Wood (2003) (Table 1).

2.7.2.5. Discharge & rainfall data. Ten months of paired hourly rain-
fall-discharge data were obtained from a tipping bucket rain gauge
and Tru–Trak capacitance probe located within the watershed
boundary and at the watershed outlet, respectively. Due to the
short period of record at the rainfall gauge, the frequency of occur-
rence analysis (Eq. (1)) was performed on 30 yr of 24-h rainfall
data collected from a long-term weather station located in Ithaca,
NY.

3. Results

3.1. Watershed storage

By fitting Eq. (2) to 26 events from 10 months of observed P–Q
data from Paines Creek, we calculated the average watershed stor-
age, S, as 15.6 cm (Fig. 5).

If deemed necessary, the curve-fitting analysis to estimate S
could be carried out on a seasonal basis in order to evaluate the ef-
fect of varying wetness conditions on the storage parameter and
runoff characteristics. Also, in the absence of observed discharge
data, it may be possible to crudely-estimate a basin-average S va-
lue by computing an aerially weighted average using tabulated CNs
as suggested by Gburek et al. (2002). The basin average S can then
be adjusted to reflect changing antecedent moisture conditions via
the standard ‘‘Antecedent Runoff Condition’’ adjustment technique
(NRCS, 2004) or by using base-flow conditions as a proxy for wa-
tershed wetness status (e.g., Cheng et al., in preparation; Shaw
and Walter, 2009).

3.2. Rainfall analysis

3.2.1. Frequency of occurrence
Ignoring all 24-h storms depths less than the initial abstraction

(0.05S = 0.78 cm), we binned 30 yr of rainfall data into 1 cm bins
and calculated the frequency of occurrence, fi (Fig. 6). We also cal-
culated the average storm size, Pf and number of runoff generating
hours for each bin (Table 2).
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Saturation excess runoff volume is dependent on rainfall
depth and aerial extent of saturation within the watershed
and is largely independent of rainfall intensity. Thus, the
TTPI method, which is intended for application in VSA
dominated regions, should be somewhat insensitive to the
choice of rainfall intensity. This is true not only for predictions
of saturated areas, but also for the runoff travel time
computation.

3.3. Runoff analysis

Fig. 7 depicts intermediate TTPI results and demonstrates
how, at a 3 m resolution, the method yields very detailed predic-
tions of saturated areas, storm runoff generation, and transport
pathways. For example, Fig. 7C depicts runoff interception by
road ditches, which reduces soil moisture and depletes water ta-
bles in downslope areas (dark red pixels left or, in this case,
downslope of the road indicate dry cells; Fig. 7C). The technique
also captures distributed runoff depths associated with roads, as
well as fine-scale hydrography such as road and agricultural
ditches (Fig. 7D).

3.4. Runoff travel time

Another intermediate result of the TTPI method is the cal-
culation of spatially distributed runoff travel times for each
rainfall bin. In accordance with VSA theory, the areal extent
of saturation expands with increasing return period/rainfall
depth (Fig. 8; 1-, 2- & 50-yr). The final composite grid, repre-
senting the sum of all frequency-weighted TT grids (Eq. (10)),
has an inverse ranking scheme such that grid cells with faster
runoff travel times (e.g., those close to road-ditches) have a
relatively higher composite score due to their more efficient
hydrological linkage, higher probability of saturation and there-
fore greater propensity to transport agricultural pollutants
(Fig. 8).
Fig. 7. Aerial photo (A and B), soil topographic index (C) and distributed runoff depth dur
The dashed and solid blue lines in 7a represent roadside- & agricultural-ditches and natu
and road ditches intercept runoff, drying out the downslope areas (dark red pixels down
(For interpretation of the references to colour in this figure legend, the reader is referre
3.5. Pollution index

The final TTPI is the product of the composite travel time (Fig. 8)
and the normalized P export coefficient rasters (Fig. 9). Because the
P coefficient map is a direct function of landuse, P source risk as-
sumes a very geometric pattern where risk is uniform within land-
use categories. This uniform assignment of risk, based on landuse,
(or sometimes subbasin or response units), typifies the output of
more traditional pollution indices and water quality models.

Fig. 10, depicts the TTPI for Paines Creek Watershed at both field
and watershed scales. Areas of higher pollution risk are indicated
by dark red cells, which signify the coincidence of faster travel
times, higher probabilities of saturation excess runoff, and high
dissolved P export coefficients. Note the high spatial resolution of
the index and the clear demarcation between pollution risks of
the agricultural and forest land uses (white arrow). Importantly,
the TTPI correctly highlighted the un-buffered concentrated flow
and saturation-excess prone areas flowing directly through a man-
ured farm field (dashed black polygons, Figs. 7–11). These would
likely have been missed by standard distributed PIs as they are
not reflected in USGS topographic maps or the National Hydrogra-
phy Dataset normally used to establish stream channels, nor does
it fall within the typical ‘‘distance to the stream’’ used in most PIs
(e.g., Czymmek et al., 2003). Interestingly, the roads also received
fairly high index values. While this is partially attributable to the
moderately high P coefficient for roads (Table 1), the primary cause
for the elevated index values were the fast road runoff travel times
resulting from road ditch interception. Roads are not normally
evaluated in traditional P-indices. Thus, it is difficult to directly
compare our results to those of other studies. However, a large
body of empirical evidence suggests P-loading from road runoff
can be substantial and, indeed, can approach or exceed that of agri-
cultural runoff in some settings (e.g. Easton et al., 2007; Wu et al.,
1998).

The TTPI grid can also be reclassified to highlight only areas
above certain thresholds (Fig. 11). It may be advantageous, for
ing a 7.25 cm, 2-yr storm event (D) over a selected farm in Paines Creek Watershed.
ral streams, respectively figure 7c provides a more detailed illustration of how roads
slope of the road indicate dry cells). Predominant flow direction is from right to left.
d to the web version of this article.)



Fig. 8. Runoff travel times for selected rainfall frequency bins (1, 2, and 50-yr) used to calculate the composite frequency-weighted travel time map (Eq. (10)). Note the
expansion of saturated areas with increasing return period and the fact that low or ‘‘Fast’’ travel times translate to ‘‘High’’ composite scores. The dashed polygons outline the
concentrated flow and saturation prone areas for reference. Predominant flow direction is right to left. (For interpretation of the references to colour in this figure, the reader
is referred to the web version of this article.)

Fig. 9. Normalized P export coefficient raster for Paines Creek. The dashed polygons outline the concentrated flow and saturation prone areas for reference. (For
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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instance, to display only the highest 25% of index scores in order to
focus attention on only the most critical source areas. As in the case
of Fig. 11, reclassifying the TTPI emphasizes features that may
otherwise be overlooked such as (i) the high pollution risk associ-
ated with a corn field (black rectangle) that is drained by a fast-
moving roadside ditch (dashed white arrow in Fig. 11), which
quickly shunts the agricultural runoff to a nearby stream and (ii)
the series of even smaller concentrated flow pathways draining
the strip cropped corn field (gray dashed lines in Fig. 11 indicate
small concentrated flow pathways). Notice also that the dendritic
index pattern to the right and left of the rectangle is broken at
fairly regular intervals which correspond to alternating strip-crop
land uses with considerably different P export coefficients (corn
and hay). The dashed black rectangle highlights a field possessing
the same land use as the solid black rectangle, yet it has substan-
tially lower TTPI scores. This is due to its less efficient hydrologic
connection (i.e. longer travel time to the roadside ditch) and lower
propensity to generate saturation-excess runoff.

To facilitate the spatial targeting of critical hydrologic linkages
for remediation, the TTPI can be used as a weighting raster in the
flow accumulation procedure within most GIS platforms (Fig. 12).
Each cell in the resulting raster represents the accumulated index
value (weight) for all upslope contributing cells. This serves to re-
veal which of the potential hydrologic pathways are of most con-
cern from a pollution risk standpoint – and may help identify
which channels are good candidates for transport-specific conser-
vation measures such as detention basins.

4. Discussion

Traditionally, most water quality models and other NPS
pollution targeting techniques identify entire subwatersheds,



Fig. 10. TTPI overlain on an aerial photograph of a selected farm field in Paines Creek. Pollution risk for forest vs. agricultural land use is clearly demarcated by the index
(white arrow). High index ratings were generally assigned to unbuffered drainages, concentrated flow areas and saturation-excess prone areas that flowed through
agricultural land uses (dashed polygons). Roads and road ditches also received relatively high scores. Predominant flow direction is right to left. (For interpretation of the
references to colour in this figure, the reader is referred to the web version of this article.)

Fig. 11. Reclassified TTPI, which highlights the upper quartile of index scores. The black rectangle emphasizes the relatively high pollution risk associated with a corn field
that is drained by a fast-moving roadside ditch (dashed white arrow), which quickly shunts the runoff to a nearby stream. Dashed gray lines indicate fine-scale topographic
depressions associated with concentrated flow. The broken dendritic index pattern associated with concentrated flow areas reflects alternating strip-crop land uses with
considerably different P export coefficients (corn and hay). Predominant flow direction is right to left. (For interpretation of the references to colour in this figure, the reader is
referred to the web version of this article.)

B.P. Buchanan et al. / Journal of Hydrology 486 (2013) 123–135 131
Hydrologic Responsive Units, or fields as candidates for blanket
control measures. As Carpentier et al. (1998) point out, implemen-
tation of spatially targeted vs. uniform conservation measures can
drastically reduce compliance costs while still achieving remedia-
tion objectives. The TTPI method offers more spatially explicit pre-
dictions of critical P loading areas and routing pathways, which
allows conservation planners to not only identify and prioritize
individual fields within a watershed, but also to pinpoint locations
at a sub-field level. These within-field hotspots would be appropri-
ate locations for the implementation of source-control BMPs such
as restrictions on nutrient application or conversion to conserva-
tion reserve lands. Because the TTPI approach identifies not just
pollutant source areas but also transport pathways, planners may
also use the TTPI to prescribe transport-specific remediation strat-
egies including buffer strips and wetland detention basins. Heath-
waite et al. (2005) advocate for the manipulation of P transport
pathways to reduce overall P loading to receiving streams and out-
line several transport management techniques (e.g. detention ba-
sins) that may be compatible with the TTPI framework.

Lane et al. (2004 and 2009) devised a novel means of accounting
for network connectivity when assessing the potential for pollution
risk that is somewhat analogous with the TTPI. Termed the Net-
work Index (NI), their approach assumes that saturated areas will
be hydrologically connected, and therefore considered a high pol-
lution risk, when a topographic index (viz. Kirkby, 1975) indicates
continuous saturation from a point in the landscape to a stream.



Fig. 12. Flow accumulation raster weighted by the TTPI. Predominant flow direction is right to left. (For interpretation of the references to colour in this figure, the reader is
referred to the web version of this article.)
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Conceptually speaking, the NI and TTPI are similar in a number of
ways: (i) they both rely on a variation of the topographic index to
determine soil moisture distributions and are therefore compatible
with VSA hydrology, (ii) they uniquely utilize high resolution
DEMs, and (iii) they both emphasize the importance of hydrologic
connectivity in assessing transport risk. The primary difference be-
tween the two approaches is in how they define the efficiency of
connectedness between any point in the landscape and the receiv-
ing water body: the NI defines this based on the lowest topo-
graphic index along a flow path while the TTPI defines this based
on the travel time. Future studies may want to evaluate the relative
differences or similarities of the two approaches in making man-
agement decisions, i.e., do both approaches highlight the same
areas as being high risk parts of the landscape; if not, what is con-
trolling the differences and is one, then, more representative of
NPS pollution dynamics.

Averaging TTPI values across larger spatial scales, such as entire
subbasins reveals that many subbasins close to cross-slope ori-
ented road ditches are categorized as high pollution risks (red
asterisk in Fig. 13A). It is also evident that, in general, the higher
risk areas are located in the headwaters of Paines creek, whereas
the low risk zones are located further downstream, close to the
mainstem (hashed area in Fig. 13A). This finding is supported by
Alexander et al. (2007) who found that headwater systems have
a ‘‘profound influence. . ..on shaping downstream water quantity
and water quality’’. When averaged within each field (Fig. 13B),
the underlying P coefficient becomes, perhaps not surprisingly, a
more dominant factor. However, even in this situation, the TTPI
method results in fields located closer to channels being ranked
higher than those further away (lower inset, Fig. 13B). Another is-
sue underscored by Fig. 13 is that by averaging over larger and lar-
ger spatial scales, as is commonly done in lumped-parameter
water quality models (e.g., SWAT, GWLF), the sub-field scale hot-
spots get averaged out or off-set by low risk areas, leading to mis-
leading predictions of high risk zones. This is particularly evident
in Fig. 13A where the white outlined area (indicated by blue cross)
shows the location of the same concentrated flow area highlighted
in Figs. 7–10. Here the sub-field hotspot is averaged out to a low
overall subbasin value (light blue) due to the presence of forest
with low propensity to generate runoff and low P coefficient fur-
ther upslope.

Results of the TTPI also serve to highlight the importance of
small artificial drainage networks in correctly delineating CSAs.
For instance, without the inclusion of roadside- and agricultural-
ditches, many of the more critical source areas would be mis-cat-
egorized as low risk zones (e.g. cornfields highlighted in Fig. 11).
This is in accordance with several other researchers who also
determined that such seemingly trivial networks can actually have
substantial hydrologic and water quality effects (Buchanan et al.,
2012; Carluer and De Marsily, 2004; Falbo, 2010; Richards and
Brenner, 2004; Royer, 2006; Toman, 2004). To further evaluate
the influence of the man-made drainage network, we created a
50 m buffer around all watercourses and executed a Zonal Statis-
tics analysis is ArcGIS to characterize the percent deviation from
the average watershed index score for natural streams vs. artificial
drainages (Table 3). Including the contribution from the road sur-
faces themselves, the mean index scores within 50 m of the ditches
were roughly three times greater than the natural streams. Exclud-
ing the roads, the mean TTPI scores were still more than twice as
great in ditches vs. streams. The higher ditch scores were directly
related to the fact that in most cases the ditches run perpendicular
to the slope and are directly adjacent to un-buffered agricultural
fields with high TTPI values. The natural streams, on the other
hand, were generally located in natural valleys that were not
advantageous to agricultural development and were, as a result,
buffered on both sides by natural riparian vegetation (forest and
shrub). The effect of drainage form (i.e. perpendicular vs. parallel
drainage structure relative to the topographic slope) on pollution
risk is further underscored by the fact that the mean TTPI value
for ‘‘perpendicular’’ ditches was over five times greater than the



Fig. 13. TTPI averaged over subbasin (A) and land use (B) layers. Black linear lines represent roads, red asterisk highlights examples of high risk subbasins drained by
perpendicular road ditches, and white outlined areas indicate the location of the field highlighted in Figs. 7–10. The two insets show close-ups of the P coefficient and TTPI
maps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Percent deviation from the average watershed TTPI score within 50 m of artificial
drainages and streams. Calculated with and without contributions from road surfaces.

Watercourse Percent deviation from
mean TTPI score – with
roads

Percent deviation from mean
TTPI score – without roads

Streams 129 127
Ditches 390 282
Ag. ditches 227 223
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watershed average, while ‘‘parallel’’ ditches averaged only 83%
higher.

In addition, other studies have found that other, even smaller
drainage features, such as tiles drains can have appreciable water
quality effects (Scott et al., 1998). Although we did not address
the effect of tile drains in this study, their effects could be ac-
counted for by including them in the digital terrain analysis (sim-
ilar to roadside ditches) and by routing tile drain runoff as channel
flow (e.g. Easton et al., 2008; Gironas et al., 2009).

Similar to traditional PIs, transport risk was assessed based on
proximity to natural streams (here characterized by travel time
to a stream as opposed to linear distance) regardless of the position
of the stream reach in the watershed. This serves to emphasize the
effect of small order, headwater streams, which as Dodds and
Oakes (2008) point out, may exert a stronger influence on down-
stream water quality than previously thought. If however, a prac-
titioner was interested in pollution risk associated with a
particular point in the watershed, as opposed to natural streams,
it is possible to calculate the TTPI based on runoff travel times to
any particular point of interest. It may be useful, for instance, to
compute the pollution risks to Cayuga Lake, which is the receiving
water body of Paines Creek and is a drinking water supply to many
nearby communities. This would more heavily emphasize in-chan-
nel P transformation processes associated with routing P to more
distance downstream points. Consequently, source areas closer to
the catchment outlet would receive higher index scores relative
to more distance headwater areas.

An obvious shortcoming of the TTPI is the use of P export coef-
ficients to represent the complex interplay between P sources and
storm runoff. It is typically not clear how export coefficients were
determined; many appear to have been optimized in watershed
models (e.g., Haith et al., 2009) and may not really be appropriate
at the relatively fine scales considered by the TTPI. However, it
does preserve a degree of parsimony often needed in watershed
management. In terms of practitioner use, expert knowledge, and
field level measured data (commonly collected by nutrient man-
agement planners and conservation personnel) could be used to
adjust these base export coefficient values.

Although we have assumed that the more frequent storms con-
tribute a disproportionately high P-load, this relationship may be
highly non-linear. Sharpley et al. (2008) found that large, infre-
quent storm events (i.e. 10 yr) have the potential to carry large
amounts of P and suggest modifying the PI of Gburek et al.
(2000) by increasing the storm return period threshold to include
fields more distant from the stream network. As Sharpley et al.
(2008) note, however, these findings are inferential and based on
data from a single small watershed. Thus, this is an area that re-
quires further research.

Another area in which the TTPI may be improved is through the
use of a probabilistic watershed storage parameter as opposed to
the static, average S value used here. For instance, given a suffi-
ciently long record of rainfall and discharge, it should be possible
to compute the frequency of occurrence of the fraction of the wa-
tershed that is saturated (Ai, Eq. (3)). Cheng et al. (submitted for
publication) offer a more detailed explanation of the procedure.
This would provide added realism to the TTPI by accounting for
temporal variation in catchment moisture status.

The travel time pollution index concept presented here provides
a starting point for incorporating physical transport processes. Fu-
ture improvements could include potential pollutant sinks, like
reservoirs (Urbaniak et al., 2012), buffer strips (Endreny and Wood,
2003), various green stormwater infrastructure, or in-river trans-
formations (e.g., Trevisan et al., 2012).
5. Conclusions

Leveraging detailed geospatial data, high resolution terrain
analyses, in a parsimonious framework, the TTPI method offers
physically realistic and spatially explicit predictions of critical P-
loading areas and routing pathways relative to many traditional
PIs. The high spatial resolution of the TTPI and the fact that it is
GIS-based makes it well suited to modern, GPS-enabled precision
agriculture. The method also serves to highlight the important role
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that fine-scale man-made drainages may be playing in rural water-
sheds by expediting the transport of NPS pollutants from agricul-
tural fields to streams. Because the technique proposed here is
relatively simple to apply, uses readily available geospatial data
and the theoretical underpinnings are transparent it provides a
useful tool for water resource managers charged with the identifi-
cation and remediation of CSAs.

Nevertheless, the TTPI would benefit from field validation and a
more physically-based approach for determining source factors
relative to the simplistic export coefficient method utilized here.
Additional future research needs include:

� The inclusion of tile drain networks and other preferential flow
pathways into the transport factor and routing algorithms
(Allaire et al., 2011).
� Testing whether different formulations and/or resolutions of

terrain-based indices offer improved predictions of CSAs. Exam-
ples include the smoothed dynamic topographic index (Lanni
et al., 2011), which has been shown to improve predictions of
saturated areas and storage dynamics and the indicex of Ludwig
and Mauser (2000) which accounts for spatio-temporal variabil-
ity in evapotranspiration.
� Another valuable contribution would be to devise a method that

allows users to quantify how the implementation of certain
BMPs may affect the overall TTPI ratings at different scales. This
would facilitate cost-benefit analyses – ensuring conservation
dollars are well spent.

Despite these potential improvements, the TTPI approach still
offers a useful initial screening tool that allows water resource
planners to identify areas that have a high potential for targeted
management or areas that require further analysis, e.g., on-site
evaluation.
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